IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i7p1550147719865505.html
   My bibliography  Save this article

On the adaptability of ensemble methods for distributed classification systems: A comparative analysis

Author

Listed:
  • Mónica Villaverde
  • David Aledo
  • David Pérez
  • Félix Moreno

Abstract

In this work, a two-stage architecture is used to analyze the information collected from several sensors. The first stage makes classifications from partial information of the entire target (i.e. from different points of view or from different kind of measures) using a simple artificial neural network as a classifier. In addition, the second stage aggregates all the estimations given by the ensemble in order to obtain the final classification. Four different ensembles methods are compared in the second stage: artificial neural network, plurality majority, basic weighted majority, and stochastic weighted majority. However, not only reliability is an important factor but also adaptation is critical when the ensemble is working in changing environments. Therefore, the artificial neural network and the plurality majority algorithm are compared against our two proposed adaptive algorithms. Unlike artificial neural network, majority methods do not require previous training. The effects of improving the first stage and how the system behaves when different perturbations are presented have been measured. Results have been obtained from two applications: a realistic one and another simpler one, with more training examples for a more accurate comparison. These results show that artificial neural network is the most accurate proposal, whereas the most innovative proposed stochastic weighted voting is the most adaptive one.

Suggested Citation

  • Mónica Villaverde & David Aledo & David Pérez & Félix Moreno, 2019. "On the adaptability of ensemble methods for distributed classification systems: A comparative analysis," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719865505
    DOI: 10.1177/1550147719865505
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719865505
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719865505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719865505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.