IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i7p1550147719860990.html
   My bibliography  Save this article

Continuously tracking of moving object by a combination of ultra-high frequency radio-frequency identification and laser range finder

Author

Listed:
  • Yulu Fu
  • Ran Liu
  • Hua Zhang
  • Gaoli Liang
  • Shafiq ur Rehman
  • Lixiang Liu

Abstract

Due to the unique and contactless way of identification, radio-frequency identification is becoming an emerging technology for objects tracking. As radio-frequency identification does not provide any distance or bearing information, positioning using radio-frequency identification sensor itself is challenging. Two-dimensional laser range finders can provide the distance to the objects but require complicated recognition algorithms to acquire the identity of object. This article proposes an innovative method to track the locations of dynamic objects by combining radio-frequency identification and laser ranging information. We first segment the laser ranging data into clusters using density-based spatial clustering of applications with noise (DBSCAN). Velocity matching–based approach is used to track the location of object when the object is in the radio-frequency identification reading range. Since the radio-frequency identification reading range is smaller than a two-dimensional laser range finder, velocity matching–based approach fails to track location of the object when the radio-frequency identification reading is not available. In this case, our approach uses the clustering results from density-based spatial clustering of applications with noise to continuously track the moving object. Finally, we verified our approach on a Scitos robot in an indoor environment, and our results show that the proposed approach reaches a positioning accuracy of 0.43 m, which is an improvement of 67.6% and 84.1% as compared to laser-based and velocity matching–based approaches, respectively.

Suggested Citation

  • Yulu Fu & Ran Liu & Hua Zhang & Gaoli Liang & Shafiq ur Rehman & Lixiang Liu, 2019. "Continuously tracking of moving object by a combination of ultra-high frequency radio-frequency identification and laser range finder," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719860990
    DOI: 10.1177/1550147719860990
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719860990
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719860990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719860990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.