Author
Listed:
- Jianhu Zheng
- Jinshuan Peng
Abstract
In order to facilitate effective crime prevention and to issue timely warnings for the sake of public security, it is important to pinpoint the accurate position of particular pedestrians in crowded areas. Face recognition is the most popular method to detect and track pedestrian movement. During the face recognition process, feature classification ability and reliability are determined by the feature extraction methods. The primary challenge for researchers is to obtain a stable result while the targeted face is subject to varying conditions—particularly of illumination. To address this issue, we propose a novel pedestrian detection algorithm with multisource face images, which involves a face recognition algorithm based on the conjugate orthonormalized partial least-squares regression analysis under a complex lighting environment. Statistical learning theory is a research specialization of machine learning, especially applicable to small samples. Building upon the theoretical principles used to solve small-sample statistical problems, a new hypothesis has been developed; using this concept, we integrate the conjugate orthonormalized partial least-squares regression with the revised support vector machine algorithm to undertake the solution of the facial recognition problem. The experimental result proves that our algorithm achieves better performance when compared with other state-of-the-art methodologies, both numerically and visually.
Suggested Citation
Jianhu Zheng & Jinshuan Peng, 2019.
"A novel pedestrian detection algorithm based on data fusion of face images,"
International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
Handle:
RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719845276
DOI: 10.1177/1550147719845276
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719845276. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.