IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i11p1550147719891319.html
   My bibliography  Save this article

Enabling real-time road anomaly detection via mobile edge computing

Author

Listed:
  • Zengwei Zheng
  • Mingxuan Zhou
  • Yuanyi Chen
  • Meimei Huo
  • Dan Chen

Abstract

To discover road anomalies, a large number of detection methods have been proposed. Most of them apply classification techniques by extracting time and frequency features from the acceleration data. Existing methods are time-consuming since these methods perform on the whole datasets. In addition, few of them pay attention to the similarity of the data itself when vehicle passes over the road anomalies. In this article, we propose QF-COTE, a real-time road anomaly detection system via mobile edge computing. Specifically, QF-COTE consists of two phases: (1) Quick filter. This phase is designed to roughly extract road anomaly segments by applying random forest filter and can be performed on the edge node. (2) Road anomaly detection. In this phase, we utilize collective of transformation-based ensembles to detect road anomalies and can be performed on the cloud node. We show that our method performs clearly beyond some existing methods in both detection performance and running time. To support this conclusion, experiments are conducted based on two real-world data sets and the results are statistically analyzed. We also conduct two experiments to explore the influence of velocity and sample rate. We expect to lay the first step to some new thoughts to the field of real-time road anomalies detection in subsequent work.

Suggested Citation

  • Zengwei Zheng & Mingxuan Zhou & Yuanyi Chen & Meimei Huo & Dan Chen, 2019. "Enabling real-time road anomaly detection via mobile edge computing," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719891319
    DOI: 10.1177/1550147719891319
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719891319
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719891319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719891319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.