IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i11p1550147719889900.html
   My bibliography  Save this article

Bio-inspired clustering scheme for Internet of Drones application in industrial wireless sensor network

Author

Listed:
  • Farooq Aftab
  • Ali Khan
  • Zhongshan Zhang

Abstract

Recent technological improvements have revolutionized the wireless sensor network–based industrial sector with the emergence of Internet of Things. Internet of Drones, a branch of Internet of Things, is used for the communication among drones. As drones are mobile in nature, they cause frequent topological changes. This changing topology causes scalability, stability, and route selection issues in Internet of Drones. To handle these issues, we propose a bio-inspired clustering scheme using dragonfly algorithm for cluster formation and management. In this article, we propose cluster head election based on the connectivity with the base station along with the fitness function which consists of residual energy and position of the drones. Furthermore, for route selection we propose an optimal path selection based on the residual energy and position of drone for efficient communication. The proposed scheme shows better results as compared to other bio-inspired clustering algorithms on the basis of evaluation benchmarks such as cluster building time, network energy consumption, cluster lifetime, and probability of successful delivery. The results indicate that the proposed scheme has improved 60% and 38% with respect to ant colony optimization and grey wolf optimization, respectively, in terms of average cluster building time while average energy consumption has improved 23% and 33% when compared to the ant colony optimization and grey wolf optimization, respectively.

Suggested Citation

  • Farooq Aftab & Ali Khan & Zhongshan Zhang, 2019. "Bio-inspired clustering scheme for Internet of Drones application in industrial wireless sensor network," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719889900
    DOI: 10.1177/1550147719889900
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719889900
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719889900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719889900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.