IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i11p1550147719885616.html
   My bibliography  Save this article

The real-time elderly fall posture identifying scheme with wearable sensors

Author

Listed:
  • Tao Xu
  • Wei Sun
  • Shaowei Lu
  • Ke-ming Ma
  • Xiaoqiang Wang

Abstract

The accidental fall is the major risk for elderly especially under unsupervised states. It is necessary to real-time monitor fall postures for elderly. This paper proposes the fall posture identifying scheme with wearable sensors including MPU6050 and flexible graphene/rubber. MPU6050 is located at the waist to monitor the attitude of the body with triaxial accelerometer and gyroscope. The graphene/rubber sensors are located at the knees to monitor the moving actions of the legs. A real-time fall postures identifying algorithm is proposed by the integration of triaxial accelerometer, tilt angles, and the bending angles from the graphene/rubber sensors. A volunteer is engaged to emulate elderly physical behaviors in performing four activities of daily living and six fall postures. Four basic fall down postures can be identified with MPU6050. Integrated with graphene/rubber sensors, two more fall postures are correctly identified by the proposed scheme. Test results show that the accuracy for activities of daily living detection is 93.5% and that for fall posture identifying is 90%. After the fall postures are identified, the proposed system transmits the fall posture to the smart phone carried by the elderly via Bluetooth. Finally, the posture and location are transmitted to the specified mobile phone by short message.

Suggested Citation

  • Tao Xu & Wei Sun & Shaowei Lu & Ke-ming Ma & Xiaoqiang Wang, 2019. "The real-time elderly fall posture identifying scheme with wearable sensors," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719885616
    DOI: 10.1177/1550147719885616
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719885616
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719885616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles L. Kane, 2005. "Erasing electron mass," Nature, Nature, vol. 438(7065), pages 168-170, November.
    2. Hubert B. Heersche & Pablo Jarillo-Herrero & Jeroen B. Oostinga & Lieven M. K. Vandersypen & Alberto F. Morpurgo, 2007. "Bipolar supercurrent in graphene," Nature, Nature, vol. 446(7131), pages 56-59, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasanna Rout & Nikos Papadopoulos & Fernando Peñaranda & Kenji Watanabe & Takashi Taniguchi & Elsa Prada & Pablo San-Jose & Srijit Goswami, 2024. "Supercurrent mediated by helical edge modes in bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Ko-Fan Huang & Yuval Ronen & Régis Mélin & Denis Feinberg & Kenji Watanabe & Takashi Taniguchi & Philip Kim, 2022. "Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719885616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.