IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i5p1550147718778482.html
   My bibliography  Save this article

FL-ASB: A Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol

Author

Listed:
  • Bin Pan
  • Hao Wu
  • Jin Wang

Abstract

In vehicular ad hoc networks, vehicle-to-vehicle–based broadcast can fast disseminate safety messages between vehicles within the whole network and hence expand drivers perception vision, which will reduce the accident probability and ensure the transportation reliability. As for fixed-period single-hop broadcast protocol, disseminating safety messages frequently can cause excessive network load. However, increasing period purely does not guarantee the real-time performance. In addition, exiting adaptive-period single-hop broadcast protocols also have limitations without considering synthetically various impact factors. Thus, how to design a single-hop broadcast protocol that can dynamically adjust the broadcast period according to the actual road condition is a pressing issue. A Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol in vehicular ad hoc networks is designed in this article, which provides a new solution for the dissemination of period safety messages. In this article, the impact of various factors (such as the number of one-hop neighbor nodes, vehicle speed, received signal strength index, and visibility) on the single-hop broadcast period has been analyzed. In view of each impact factor, we design corresponding membership function and fuzzy rules according to the specific scenarios and parameters. It realizes the adaptive changes of period safety messages broadcast period through the simulation of the proposed fuzzy logic inference system. Finally, we verify the performance of the Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol in a bidirectional four-lane highway scenario. Simulation results show that the proposed Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol has obvious advantages in terms of network load ratio, average one-hop delay, and delivery ratio.

Suggested Citation

  • Bin Pan & Hao Wu & Jin Wang, 2018. "FL-ASB: A Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718778482
    DOI: 10.1177/1550147718778482
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718778482
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718778482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718778482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.