IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i5p1550147718776227.html
   My bibliography  Save this article

Cost-efficient dynamic quota-controlled routing in multi-community delay-tolerant networks

Author

Listed:
  • Jiagao Wu
  • Yue Ma
  • Linfeng Liu

Abstract

Delay-tolerant networks are novel wireless mobile networks, which are characterized with high latency and frequent disconnectivity. Besides, people carrying mobile devices form a lot of communities because of similar interests and social relationships. How to improve the routing efficiency in multi-community scenarios has become one of the research hot spots in delay-tolerant networks. In this article, we present a network model of the multi-community delay-tolerant networks and formulate a dynamic quota-controlled routing problem of minimizing the average number of copies of a message that satisfies the required delivery probability under the given time-to-live of the message as a nonlinear optimization problem. To solve this problem, we propose an improved genetic algorithm called genetic algorithm for delivery probability and time-to-live optimization for the dynamic quota-controlled routing scheme to reduce the routing cost further. In addition, a cost-efficient dynamic quota-controlled routing protocol based on genetic algorithm for delivery probability and time-to-live optimization is proposed, which can dynamically adjust message copies according to its assigned delivery probability and time-to-live in different communities on the shortest path. Both the numerical and simulation results show that our routing with the proposed algorithm is more cost efficient.

Suggested Citation

  • Jiagao Wu & Yue Ma & Linfeng Liu, 2018. "Cost-efficient dynamic quota-controlled routing in multi-community delay-tolerant networks," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718776227
    DOI: 10.1177/1550147718776227
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718776227
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718776227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718776227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.