IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i10p1550147718805689.html
   My bibliography  Save this article

Dynamic and adaptive multi-path routing algorithm based on software-defined network

Author

Listed:
  • Wu Jiawei
  • Qiao Xiuquan
  • Nan Guoshun

Abstract

Recently, there has been a surge of the video services over the Internet. However, service providers still have difficulties in providing high-quality video streaming due to the problem of scheduling efficiency and the wide fluctuations of end-to-end delays in the existing multi-path algorithms. To solve these two problems affecting video transmission quality, networks are expected to have the capability of dynamically managing the network nodes for satisfying quality-of-service requirements, which is a challenging issue for media streaming applications. Against this changing network landscape, this article proposes a dynamic and adaptive multi-path routing algorithm under three constraints (packet loss, time delay, and bandwidth) that are based on software-defined network for centralized routing computations and real-time network state updating in multimedia applications. Compared with related multi-path routing proposals, dynamic and adaptive multi-path routing makes efficient use of the latest global network state information achieved by the OpenFlow controller and calculates the optimal routes dynamically according to the real-time status information of the link. Moreover, our proposed algorithm can significantly reduce the computational overhead of the controller while completing a fine-grained flow balance. Experimental results show that dynamic and adaptive multi-path routing significantly outperforms other existing scheduling approaches in achieving a 35%–70% improvement in quality-of-service.

Suggested Citation

  • Wu Jiawei & Qiao Xiuquan & Nan Guoshun, 2018. "Dynamic and adaptive multi-path routing algorithm based on software-defined network," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718805689
    DOI: 10.1177/1550147718805689
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718805689
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718805689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhilendra Pratap Singh & Ashish Kr Luhach & Xiao-Zhi Gao & Sandeep Kumar & Diptendu Sinha Roy, 2020. "Evolution of wireless sensor network design from technology centric to user centric: An architectural perspective," International Journal of Distributed Sensor Networks, , vol. 16(8), pages 15501477209, August.
    2. Priyanka Kamboj & Sujata Pal, 2021. "A policy based framework for quality of service management in software defined networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(3), pages 331-349, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718805689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.