IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i8p1550147717725698.html
   My bibliography  Save this article

Localization of multiple jamming attackers in vehicular ad hoc network

Author

Listed:
  • Liang Pang
  • Xiao Chen
  • Yong Shi
  • Zhi Xue
  • Rida Khatoun

Abstract

In vehicular ad hoc network, wireless jamming attacks are easy to be launched in the control channel and can cause serious influence on the network performance which may cause further safety accidents. In order to address the issue of wireless jamming attacks, a new technique which localizes the jamming attackers and prevents vehicles from jamming through human intervention is proposed. In this article, we propose a range-free approach to localize the source of the attacker and determine the number of jamming attackers. The data set is the locating information and the jamming detection information associated with each vehicle. Then, we formulate the problem of determining the number of attackers as a multiclass detection problem. We define the incorrectly classified area and use it to measure the distance between samples and centroids in fuzzy c-means algorithm. We further determine the number of jamming attackers through the coverage rate of beaconing circles and utilize weight-based fuzzy c-means to classify the data set. When the data set is classified as acceptable, we further explore the means of using particle swarm optimization algorithm to calculate the positional coordinates of each attacker. We simulate our techniques in MATLAB, and both urban traffic area and open area are considered in our simulation. The experimental results suggest that the proposed algorithm can achieve high precision when determining the number of attackers while the result of the classified performance is always satisfying. Our localization results lead to higher accuracy than other existing solutions. Also, when the data set is limited, the chances of taking accurate localization are higher than other measures.

Suggested Citation

  • Liang Pang & Xiao Chen & Yong Shi & Zhi Xue & Rida Khatoun, 2017. "Localization of multiple jamming attackers in vehicular ad hoc network," International Journal of Distributed Sensor Networks, , vol. 13(8), pages 15501477177, August.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:8:p:1550147717725698
    DOI: 10.1177/1550147717725698
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717725698
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717725698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:8:p:1550147717725698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.