IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i7p1550147717718755.html
   My bibliography  Save this article

A quality of service–aware preemptive tidal flow queuing model for wireless multimedia sensor networks in the smart grid environment

Author

Listed:
  • Li Peizhe
  • Wu Muqing
  • Zhao Min
  • Liao Wenxing

Abstract

The smart grid incorporates a two-way communication system between customers and the utility for advanced monitoring and intelligent control of supply and demand. Wireless multimedia sensor network can be treated as an organic supplement and a peripheral network in this two-way communication system. However, the challenging smart grid environment makes it difficult to achieve a high quality of service in wireless multimedia sensor network. This article proposes a prioritization mechanism that considers the heterogeneous characteristics of smart grid traffic. Specifically, an innovative channel allocation and traffic scheduling scheme, named the preemptive tidal flow queuing model, is presented. This scheme achieves differentiated services for diverse communication data when the wireless multimedia sensor network accesses the core network and ensures the performance for high-priority data at the expense of the performance for low-priority data. Simulation analyses show that the performance for high-priority messages can be reliably guaranteed and that the preemptive tidal flow queuing model satisfies the requirements for a wireless multimedia sensor network operating in the smart grid environment. This article offers three main contributions: the development of a prioritization mechanism specifically for a wireless multimedia sensor network in the smart grid environment, the proposal of the preemptive tidal flow queuing model, and the presentation of formulas and simulations to verify the performance of the preemptive tidal flow queuing model.

Suggested Citation

  • Li Peizhe & Wu Muqing & Zhao Min & Liao Wenxing, 2017. "A quality of service–aware preemptive tidal flow queuing model for wireless multimedia sensor networks in the smart grid environment," International Journal of Distributed Sensor Networks, , vol. 13(7), pages 15501477177, July.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717718755
    DOI: 10.1177/1550147717718755
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717718755
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717718755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717718755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.