IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i11p1550147717741835.html
   My bibliography  Save this article

Indoor positioning tracking with magnetic field and improved particle filter

Author

Listed:
  • Mei Zhang
  • Tingting Qing
  • Jinhui Zhu
  • Wenbo Shen

Abstract

The indoor magnetic field is omnipresent and independent from external equipment. Local magnetic field is also relatively stable compared with WiFi signals in the same environment and nonuniform in different locations. However, it has low discernibility, in that there are similar magnetic features in different areas. Pedestrian movement model is a continuous navigation method based on inertial sensors. However, inertial sensors provide only short-term accuracy and suffer from accumulation error. Hence, an indoor positioning tracking that uses the magnetic field and an improved particle filter is proposed in this article. First, adaptive four-threshold step-detection and mixed adaptive step length methods are used to obtain the travel distance in different walking states. Furthermore, an improved particle filter is adopted to calibrate the pedestrian movement model by fusing indoor magnetic field information. Besides, initial locations of particles are restricted in a determined area according to WiFi signals, and the diversity of the particles is increased by a classified heuristic resampling. The proposed system was implemented on an Android phone and extensive experiments were conducted in real indoor environments. The experiments show that the positioning accuracy and system robustness are greatly improved compared with other methods.

Suggested Citation

  • Mei Zhang & Tingting Qing & Jinhui Zhu & Wenbo Shen, 2017. "Indoor positioning tracking with magnetic field and improved particle filter," International Journal of Distributed Sensor Networks, , vol. 13(11), pages 15501477177, November.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717741835
    DOI: 10.1177/1550147717741835
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717741835
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717741835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717741835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.