IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i11p1550147717739831.html
   My bibliography  Save this article

A fruit fly optimization algorithm with a traction mechanism and its applications

Author

Listed:
  • Xing Guo
  • Jian Zhang
  • Wei Li
  • Yiwen Zhang

Abstract

The original fruit fly optimization algorithm, as well as some of its improved versions, may fail to find the function extremum when it falls far from the origin point or in the negative range. To address this problem, in this article, we propose a new fruit fly optimization algorithm, named as the traction fruit fly optimization algorithm, which is mainly based on the combination of “traction population†and dynamic search radius. In traction fruit fly optimization algorithm, traction population consists of the worst individual recorded in the iterative process, the individual in the center of the interval, and the best fruit flies individual through different transformations, which is used to avoid the algorithm stopping at a local optimal. Moreover, our dynamic search radius strategy will ensure a wide search range in the early stage and enhance the local search capability in the latter part of the algorithm. Extensive experiment results show that traction fruit fly optimization algorithm is superior to fruit fly optimization algorithm and its other improved versions in the optimization of extreme values of continuous functions. In addition, through solving the service composition optimization problem, we prove that traction fruit fly optimization algorithm can also obtain a better performance in the discrete environment.

Suggested Citation

  • Xing Guo & Jian Zhang & Wei Li & Yiwen Zhang, 2017. "A fruit fly optimization algorithm with a traction mechanism and its applications," International Journal of Distributed Sensor Networks, , vol. 13(11), pages 15501477177, November.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717739831
    DOI: 10.1177/1550147717739831
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717739831
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717739831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717739831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.