IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i10p1550147717737968.html
   My bibliography  Save this article

Joint routing and scheduling for data collection with compressive sensing to achieve order-optimal latency

Author

Listed:
  • Xiaohan Yu
  • Seung Jun Baek

Abstract

We consider a joint routing and scheduling scheme for data collection in wireless sensor networks leveraging compressive sensing under the protocol interference model. We propose the construction of a connected dominating set as a network backbone for efficient routing. A hybrid compressive sensing technique, which combines conventional and compressive data gathering schemes, is used to aggregate data over the backbone. Pipelined scheduling is developed for fast aggregation of compressed data over the backbone. We set the communication range of sensor nodes to an appropriate value to control the size of the backbone and demonstrate that the proposed scheme can achieve order-optimal latency for data gathering. We extend the proposed scheme to the physical interference model and show that comparable latency is achievable under physical interference model. In addition, the proposed scheme is shown to be energy-efficient, in that it can achieve order-optimal energy consumption given that the sensor data sparsity is of constant order. Simulation results show the effectiveness of the proposed scheme in terms of latency and energy consumption.

Suggested Citation

  • Xiaohan Yu & Seung Jun Baek, 2017. "Joint routing and scheduling for data collection with compressive sensing to achieve order-optimal latency," International Journal of Distributed Sensor Networks, , vol. 13(10), pages 15501477177, October.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:10:p:1550147717737968
    DOI: 10.1177/1550147717737968
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717737968
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717737968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:10:p:1550147717737968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.