IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v12y2016i9p1550147716668083.html
   My bibliography  Save this article

A distributed algorithm for maximizing utility of data collection in a crowd sensing system

Author

Listed:
  • Qinghua Chen
  • Zhengqiu Weng
  • Yang Han
  • Yanmin Zhu

Abstract

Mobile crowd sensing harnesses the data sensing capability of individual smartphones, underpinning a variety of valuable knowledge discovery, environment monitoring, and decision-making applications. It is a central issue for a mobile crowd sensing system to maximize the utility of sensing data collection at a given cost of resource consumption at each smartphone. However, it is particularly challenging. On the one hand, the utility of sensing data from a smartphone is usually dependent on its context which is random and varies over time. On the other hand, because of the marginal effect, the sensing decision of a smartphone is also dependent on decisions of other smartphones. Little work has explored the utility maximization problem of sensing data collection. This article proposes a distributed algorithm for maximizing the utility of sensing data collection when the smartphone cost is constrained. The design of the algorithm is inspired by stochastic network optimization technique and distributed correlated scheduling. It does not require any prior knowledge of smartphone contexts in the future, and hence sensing decisions can be made by individual smartphone. Rigorous theoretical analysis shows that the proposed algorithm can achieve a time average utility that is within O (1/ V ) of the theoretical optimum.

Suggested Citation

  • Qinghua Chen & Zhengqiu Weng & Yang Han & Yanmin Zhu, 2016. "A distributed algorithm for maximizing utility of data collection in a crowd sensing system," International Journal of Distributed Sensor Networks, , vol. 12(9), pages 15501477166, September.
  • Handle: RePEc:sae:intdis:v:12:y:2016:i:9:p:1550147716668083
    DOI: 10.1177/1550147716668083
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147716668083
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147716668083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:12:y:2016:i:9:p:1550147716668083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.