Author
Listed:
- Kyoung-Mi Im
- Jae-Hyun Lim
Abstract
This paper proposes a lighting control system based on RTP to save lighting energy cost by utilizing daylight while maintaining target luminance suited to the purpose. DR is a mechanism which transmits load by changing power use pattern depending on the user and receiving power charges signal at real time so that power demand would not exceed supply. However, DR is not actually implemented in an effective way due to a burden on the participants in the program to respond voluntarily towards pricing signals. In this paper, power charge process is categorized into three stages according to power load and proposes an LED control system based on WSN which automatically responds according to power demand. Daylight is controlled with a venetian blind, but it is controlled at the highest angle of uniformity ratio of illumination per time zone to maintain the uniformity of natural lights. This study establishes two test beds having the same environment. Further, illumination cost and power consumption of testing group that provides service with variable target illumination according to RTP as well as control group that serves with fixed target illumination regardless of power consumption were measured and energy saving by both conditions was compared.
Suggested Citation
Kyoung-Mi Im & Jae-Hyun Lim, 2015.
"Lighting Control System Based on the RTP of Smart Grid in WSN,"
International Journal of Distributed Sensor Networks, , vol. 11(9), pages 571429-5714, September.
Handle:
RePEc:sae:intdis:v:11:y:2015:i:9:p:571429
DOI: 10.1155/2015/571429
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:9:p:571429. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.