Author
Listed:
- VÃctor Cano-Ciborro
- Ana Medina
- Alejandro Burgueño
- Mario González-RodrÃguez
- Daniel DÃaz
- MarÃa Rosa Zambrano
Abstract
This study evaluates the spatial behavior of an intermodal transportation hub in Carapungo, one of the densest neighborhoods in Quito, Ecuador. This public infrastructure is deficient and lacks adequate equipment for the people who use, occupy, and transit within and around it, as well as for the numerous activities that occur, particularly at Carapungo’s Entry Park. Traditional methods for analyzing urban dynamics and land use are typically rigid and fail to grasp the complex and nonlinear nature of public spaces, especially in informal Global South cities. However, recent advancements in Artificial Intelligence and Machine Learning, combined with aerial drone videos, have enabled the modeling and prediction of urban dynamics beyond state regulations and formal planning. In this context, we developed a model using Computer Vision Technology and the YOLOv5 algorithm, incorporating Deep Learning training. The objective is twofold: firstly, to detect people, their movement and speed; and secondly, to produce “Occupancy†and “Count & Speed†cartographies that highlight commuters’ spatial patterns. These situated cartographies provide valuable insights into urban design, mobility, and interaction within a conflicted public space’s-built environment. The generated data offer planners and policymakers quantitative spatial information to consider local practices and dynamics in urban planning, particularly in situations of informality and insufficient urban infrastructure.
Suggested Citation
VÃctor Cano-Ciborro & Ana Medina & Alejandro Burgueño & Mario González-RodrÃguez & Daniel DÃaz & MarÃa Rosa Zambrano, 2025.
"Mapping public space micro occupations: Drone driven predictions of spatial behaviors in Carapungo, Quito,"
Environment and Planning B, , vol. 52(3), pages 629-645, March.
Handle:
RePEc:sae:envirb:v:52:y:2025:i:3:p:629-645
DOI: 10.1177/23998083241262548
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:52:y:2025:i:3:p:629-645. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.