Author
Listed:
- Nicholas S Dalton
- Mark Hurrell
Abstract
Any analytical study of a neighbourhood must begin with an accurate definition of the geographic region that contains it. For a long time, there has been an interest in taking surveys of neighbourhood extents, but this can generate numerous haphazardly sketched polygons. Researchers typically face the challenges of using boundary polygons reported by each participant and unifying these polygons into one representative boundary. Over the years, several researchers have reported their findings on methods for unifying these boundaries. We present and compare the following five methods (two existing, one modified and two new): Dalton radial average, Bae–Montello average, a vectorised version of the Bae–Montello raster grid overlay, a vectorised derivative inspired by the Wenhao kernel density axis method maximum kernel density axis and a new k-medians clustering method. A crowd-sourced evaluation method is presented. N =42 raters ranked the five methods of aggregating real boundary data based on the results from three study areas. We found that the boundary aggregation method derived from the Bae–Montello grid, closely followed by the Dalton radial average method, provided the most reasonable results. This paper outlines the reasons for these results and illustrates how this knowledge may point to the ability of future algorithms to improve the presented methods. The paper ends with a recommendation that neighbourhood boundaries should utilise boundaries derived from the Bae–Montello raster grid overlay method and/or the Dalton radial average method to facilitate comparisons in the field.
Suggested Citation
Nicholas S Dalton & Mark Hurrell, 2023.
"Methods for neighbourhood Mapping, boundary agreement,"
Environment and Planning B, , vol. 50(2), pages 401-415, February.
Handle:
RePEc:sae:envirb:v:50:y:2023:i:2:p:401-415
DOI: 10.1177/23998083221115195
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:2:p:401-415. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.