Author
Listed:
- Vanshika Nimker
- Cheng-Di Dong
- Anil Kumar Patel
- Ajeet Singh Chauhan
- Chiu-Wen Chen
- Reeta Rani Singhania
Abstract
Cellulose is the most abundant renewable polymer on Earth which is extensively distributed in diverse ecosystems. It is present in higher plants, marine organisms, and also produced through microbial processes in organisms like algae, fungi, and bacteria. From an industrial perspective, the semicrystalline nature of cellulose present in different plant and microbial sources enables the fabrication of various types of nanocellulose, such as nanofibre and nanocrystals, through mechanical disintegration and chemical methods, respectively. Nanocellulose distinguishes itself as a sustainable, nonharmful, and biodegradable polymer. It will enable sustainable development for responsible consumption and production. Possessing a range of excellent properties, it can be seamlessly integrated into various materials. Research on nanocellulose is gaining momentum in response to current issues related to fossil fuels, including concerns about CO 2 emissions, plastic pollution, and the need for renewable energy sources. This review addresses nanocrystals production method from cellulose found in agricultural, microbial sources, and its applications in fields such as materials science, electronics, medicine, and environmental science.
Suggested Citation
Vanshika Nimker & Cheng-Di Dong & Anil Kumar Patel & Ajeet Singh Chauhan & Chiu-Wen Chen & Reeta Rani Singhania, 2025.
"Nanocrystal cellulose from diverse biological sources: Application and innovations,"
Energy & Environment, , vol. 36(5), pages 2288-2313, August.
Handle:
RePEc:sae:engenv:v:36:y:2025:i:5:p:2288-2313
DOI: 10.1177/0958305X241251394
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:36:y:2025:i:5:p:2288-2313. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.