IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v36y2025i5p2152-2173.html
   My bibliography  Save this article

Physical characterization of agar-based biodegradable films derived from nonhazardous laboratory waste

Author

Listed:
  • Priyanka Wagh
  • Viniti Vaidya
  • Neelu Nawani

Abstract

Globally, approximately 2.12 billion tons of waste are annually disposed of, with laboratories significantly contributing across diverse waste streams. Effective waste management strategies are crucial to mitigate environmental impact and promote sustainability within scientific communities. This study addresses the challenges by introducing a novel method that transforms laboratory media waste into a valuable biopolymer named “Agastic.†The process involves repurposing agar extracted from bulk laboratory waste, blending it with bio-based plasticizers to produce Agastic sheets exhibiting mechanical properties comparable to traditional bioplastics. Using response surface methodology (RSM) and central composite design (CCD), optimal concentrations of agar (1.5–2.5% w/v), glycerol (0.25–1% v/v), and ethanolamine (0.5–1.5% v/v) were determined. Predictions from Design Expert software indicated impressive tensile strength up to 14.31 MPa for AGA-1 and elongation at break up to 52% for AGA-2. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed agarose structural features in AGA-1 and AGA-2. Thermogravimetric analysis (TGA) showed polysaccharide-related breakdown between 38°C and 280°C in AGA-1, peaking at 299.36°C; AGA-2 exhibited diverse thermal decomposition up to 765°C, suggesting their biodegradable potential in packaging applications. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) analysis confirmed nontoxic nature of Agastic and preserved morphological integrity in both samples. Soil degradation studies revealed AGA-1 and AGA-2 losing 71.31% and 70.88% of weight, respectively, over 15 days. This innovation provides a sustainable pathway to repurpose laboratory waste into eco-friendly bioplastics, particularly suitable for moisture-sensitive packaging such as nursery applications. These findings underscore Agastic films’ promise as environmentally friendly alternatives to traditional plastics, supporting circular bioeconomy principles and significantly reducing ecological impacts associated with plastic waste.

Suggested Citation

  • Priyanka Wagh & Viniti Vaidya & Neelu Nawani, 2025. "Physical characterization of agar-based biodegradable films derived from nonhazardous laboratory waste," Energy & Environment, , vol. 36(5), pages 2152-2173, August.
  • Handle: RePEc:sae:engenv:v:36:y:2025:i:5:p:2152-2173
    DOI: 10.1177/0958305X241282606
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X241282606
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X241282606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:36:y:2025:i:5:p:2152-2173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.