IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v36y2025i3p1155-1173.html
   My bibliography  Save this article

An experimental evaluation of cetane improving techniques for enhancing the performance and emission trade-off in diesel engine: A comparative study

Author

Listed:
  • B Musthafa
  • MA Asokan

Abstract

The polyunsaturated fatty acid methyl ester concentration in Prosopis juliflora biodiesel drops the cetane number and affects ignition quality. In this study, two fuel reformulation strategies, viz. partial hydrogenation and the inclusion of Di-tert-butyl peroxide (DTBP), are investigated for their ability to improve the combustion and performance of a diesel–biodiesel (B20) blend without compromising the emissions trade-off. An autoclave reactor utilizes partially hydrogenated juliflora biodiesel and gas chromatography to determine the altered fuel composition . The cetane improver is DTBP, which is mixed with B20 at a concentration of 2000 ppm. The filterability of the test fuel was evaluated using the Tamson filter blocking tendency apparatus. Engine parameters and emissions of the base diesel (D0), JB20, HJB20, and JB20 + DTBP test fuels were examined in a diesel engine. According to the FBT results, JB20 (1.36) and HJB20 (1.28) have good filterability, which is consistent with the ASTM standard (D2068-14). While comparing JB20 blend with modified JB20 fuels decreases NOx (up to 5.24%) and increases brake thermal efficiency (7.5%) at full load. Compared to diesel fuel, partially hydrogenated blend fuel emissions viz. HC, CO, and smoke were reduced by 15.24%, 7.76%, and 10.14%, respectively. Based on the above results, partial hydrogenation is more beneficial than the inclusion of DTBP in enhancing biodiesel's trade-off qualities.

Suggested Citation

  • B Musthafa & MA Asokan, 2025. "An experimental evaluation of cetane improving techniques for enhancing the performance and emission trade-off in diesel engine: A comparative study," Energy & Environment, , vol. 36(3), pages 1155-1173, May.
  • Handle: RePEc:sae:engenv:v:36:y:2025:i:3:p:1155-1173
    DOI: 10.1177/0958305X231193866
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X231193866
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X231193866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:36:y:2025:i:3:p:1155-1173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.