IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i5p870-896.html
   My bibliography  Save this article

Experimental investigation of designed solar parabolic concentrator based desalination system for textile industry wastewater treatment

Author

Listed:
  • Atin K Pathak
  • VV Tyagi
  • Sanjeev Anand
  • Richa Kothari

Abstract

The escalation in demand for textile products increased the use of fresh water and treatment of wastewater; which escalates the search for suitable and energy-efficient technology for wastewater treatment. Solar assisted technology ( i.e. solar desalination) for the textile industry wastewater treatment is proved to be an affordable technology. The only drawback of solar desalination is its low productivity which is the major hindrance in the global acceptance of the system. In the present study, an ingenious improvement in form of a parabolic concentrator-based solar desalination system (PCB-SDS) is designed to overcome low productivity, and the simultaneous use of source textile industry wastewater for its treatment makes this study more realistic. The performance of the designed system was examined for three different brine depths i.e. 20%, 40%, and 60% for two different processing step i.e. Dyeing and Degumming. System performance was evaluated in terms of energetic, exergetic, pollutant removal, and economic analysis. The maximum output of the system was found to be around 7440 and 8330 mL/day on clear sunny days with textile dyeing wastewater (TDyWW) and textile degumming wastewater (TDgWW) at 60% depth respectively. Daily average energy and exergy efficiency of system varies in the range 39.8–51.9 and 3.6–4.8% respectively. The degumming wastewater shows 85% COD removal, whereas, around 90% of TDS and hardness removal was also recorded. The dyeing processed wastewater showed 80% COD removal efficiency, ≅90% TDS, and hardness removal. The cost per liter of distillate output produced from designed PCB-SDS was found to be 0.014 $/L.

Suggested Citation

  • Atin K Pathak & VV Tyagi & Sanjeev Anand & Richa Kothari, 2022. "Experimental investigation of designed solar parabolic concentrator based desalination system for textile industry wastewater treatment," Energy & Environment, , vol. 33(5), pages 870-896, August.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:5:p:870-896
    DOI: 10.1177/0958305X211027335
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211027335
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211027335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:5:p:870-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.