IDEAS home Printed from https://ideas.repec.org/a/sae/clnure/v34y2025i7p340-353.html
   My bibliography  Save this article

Machine Learning-Based Prediction Model for Health-Related Quality of Life in Diabetic Patients

Author

Listed:
  • Shinhye Ahn
  • Minjeong An

Abstract

The increasing prevalence of diabetes mellitus (DM) and patients’ lack of self-management awareness have led to a decline in health-related quality of life (HRQoL). Studies identifying potential risk factors for HRQoL in DM patients and presenting generalized models are relatively scarce. The study aimed to develop and evaluate a machine learning (ML)-based model to predict the HRQoL in adult diabetic patients and to examine the important factors affecting HRQoL. This study extracted factors from the Korea National Health and Nutrition Examination Survey database (2016–2020) based on situation-specific theory, and using data from 2,501 adult DM patients. We developed five ML-based HRQoL classifiers (logistic regression, naïve Bayes, random forest, support vector machine, and extreme gradient boosting (XGBoost) in DM patients. The developed ML model was evaluated using six evaluation metrics to determine the best model, and feature importance was computed based on Shapley additive explanations (SHAP) value. The XGBoost model showed the best performance, with an accuracy of 0.940, a recall of 0.943, a precision of 0.940, a specificity of 0.919, an F1-score of 0.942, and an area under the curve score of 0.984. Based on SHAP values, the top five significant predictors of HRQoL were self-rated health (1.898), employment (0.822), triglycerides (0.781), education level (0.618), and aspartate transaminase/alanine transaminase ratio (0.611). The findings confirmed that the ML-based prediction model achieved high accuracy (over 90%) in distinguishing stable and at-risk groups in terms of HRQoL among adult DM patients. The XGBoost model’s superior performance supports its potential integration into routine diabetes care as a decision-support tool. Identifying high-risk individuals early can help healthcare providers implement targeted interventions to improve long-term health outcomes.

Suggested Citation

  • Shinhye Ahn & Minjeong An, 2025. "Machine Learning-Based Prediction Model for Health-Related Quality of Life in Diabetic Patients," Clinical Nursing Research, , vol. 34(7), pages 340-353, September.
  • Handle: RePEc:sae:clnure:v:34:y:2025:i:7:p:340-353
    DOI: 10.1177/10547738251367551
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/10547738251367551
    Download Restriction: no

    File URL: https://libkey.io/10.1177/10547738251367551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:clnure:v:34:y:2025:i:7:p:340-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.