IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Analysis of dental caries using generalized linear and count regression models

Listed author(s):
  • S. B. Javali M. Phil

    (USM-KLE International Medical School, Karnataka, India)

  • Parameshwar V. Pandit

    (Bangalore University)

Registered author(s):

    Generalized linear models (GLM) are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are fl exible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero infl ated count regression models such as the zero-inflated Poisson (ZIP), zeroinflated negative binomial (ZINB) regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and overdispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by Romanian Statistical Review in its journal Romanian Statistical Review.

    Volume (Year): 61 (2013)
    Issue (Month): 10 (November)
    Pages: 73-82

    in new window

    Handle: RePEc:rsr:journl:v:61:y:2013:i:10:p:73-82
    Contact details of provider: Postal:
    16 Libertatii Avenue, Sector 5, Bucure┼čti, Code 70542

    Phone: 004 021 336 2691
    Fax: 004 021 3124873
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:rsr:journl:v:61:y:2013:i:10:p:73-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Adrian Visoiu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.