Author
Listed:
- Matteo Maggiolo
- Oleg Szehr
Abstract
In this paper we measure the out-of-sample performance of sample-based rolling-window neural network (NN) portfolio optimization strategies. We show that if NN strategies are evaluated using the holdout (train–test split) technique, then high out-of-sample performance scores can commonly be achieved. Although this phenomenon is often employed to validate NN portfolio models, we demonstrate that it constitutes a “fata morgana†that arises due to a particular vulnerability of portfolio optimization to overfitting. To assess whether overfitting is present, we set up a dedicated methodology based on combinatorially symmetric cross-validation that involves performance measurement across different holdout periods and varying portfolio compositions (the random-asset-stabilized combinatorially symmetric cross-validation methodology). We compare a variety of NN strategies with classical extensions of the mean–variance model and the 1 / N strategy. We find that it is by no means trivial to outperform the classical models. While certain NN strategies outperform the 1 / N benchmark, of the almost 30 models that we evaluate explicitly, none is consistently better than the short-sale constrained minimum-variance rule in terms of the Sharpe ratio or the certainty equivalent of returns.
Suggested Citation
Matteo Maggiolo & Oleg Szehr, .
"Overfitting in portfolio optimization,"
Journal of Risk Model Validation, Journal of Risk Model Validation.
Handle:
RePEc:rsk:journ5:7957638
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7957638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.