IDEAS home Printed from
   My bibliography  Save this article

Solutions For Optimizing The Stream Compaction Algorithmic Function Using The Compute Unified Device Architecture


  • Alexandru Pîrjan

    () (Faculty of Computer Science for Business Management, Romanian-American University)


In this paper, I have researched and developed solutions for optimizing the stream compaction algorithmic function using the Compute Unified Device Architecture (CUDA). The stream compaction is a common parallel primitive, an essential building block for many data processing algorithms, whose optimization improves the performance of a wide class of parallel algorithms useful in data processing. A particular interest in this research was to develop solutions for optimizing the stream compaction algorithmic function that offers optimal solutions over an entire range of CUDA enabled GPUs: Tesla GT200, Fermi GF100 and the latest Kepler GK104 architecture, released on 22 March 2012. In order to confirm the utility of the developed optimization solutions, I have extensively benchmarked and evaluated the performance of the stream compaction algorithmic function in CUDA.

Suggested Citation

  • Alexandru Pîrjan, 2012. "Solutions For Optimizing The Stream Compaction Algorithmic Function Using The Compute Unified Device Architecture," Romanian Economic Business Review, Romanian-American University, vol. 6(1), pages 216-231, May.
  • Handle: RePEc:rau:journl:v:6:y:2012:i:1:p:216-231

    Download full text from publisher

    File URL:
    Download Restriction: no


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rau:journl:v:6:y:2012:i:1:p:216-231. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alex Tabusca). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.