IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_1997_num_127_1_5836.html
   My bibliography  Save this article

Une application des réseaux de neurones artificiels MLP à la prévision du prix d'une option négociable

Author

Listed:
  • Antonio Fiordaliso

Abstract

[fre] Une application des réseaux de neurones artificiels MLPà la prévision du prix d'une option négociable . par Antonio Fiordaliso . Le problème étudié est celui de la prévision du prix du call sur contrat à terme Eurodollar 3 mois (ED3). Le but recherché est de mettre au point un modèle de prévision neuronal, qui pourra s'intégrer ultérieurement dans un système expert flou de gestion dynamique de portefeuilles d'options. Nous détaillons quelques problèmes et techniques relatifs à la mise au point des modèles ANN {Artificial Neural Networks) dans le cadre d'une prévision effectuée à partir d'une seule variable explicative, et de plusieurs. L'architecture neuronale considérée est celle du Perceptron multi-couches (MLP). Nous comparons les prévisions neuronales à celles obtenues par d'autres techniques de prévision. [eng] Applying MLP Artificial Neural Networks to Forecasting the Price of a TVaded Option . by Antonio Fiordaliso . This article looks at forecasting the call price for a three-month Eurodollar (ED3) contract. The aim is to set up a neural forecasting model that can eventually be incorporated into a fuzzy expert system for active trading and hedging of option portfolios. The article details some of the problems and techniques involved in setting up ANN (Artificial Neural Network) models for a forecast based on one and then several explanatory variables. The neural architecture considered is that of the multi-layer perceptron (MLP). The neural forecasts are compared with those obtained using other forecasting techniques.

Suggested Citation

  • Antonio Fiordaliso, 1997. "Une application des réseaux de neurones artificiels MLP à la prévision du prix d'une option négociable," Économie et Prévision, Programme National Persée, vol. 127(1), pages 47-62.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_1997_num_127_1_5836
    Note: DOI:10.3406/ecop.1997.5836
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.1997.5836
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_1997_num_127_1_5836
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_1997_num_127_1_5836. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Equipe PERSEE). General contact details of provider: https://www.persee.fr/collection/ecop .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.