Author
Listed:
- Xiaojuan Lu
- Jiamei Zhang
- Qingling He
- Shiyu Zheng
- Juan Su
Abstract
This study proposes a novel GPS-based methodology for Macroscopic Fundamental Diagram (MFD) estimation to overcome limitations of fixed detectors and inaccurate penetration rate assumptions. The approach dynamically identifies stop-line positions using spatiotemporal floating car data, calculates maximum queue lengths per signal cycle by combining floating car positions with estimated arriving vehicle lengths, and establishes a speed-based nonlinear model to determine queuing vehicle counts. A dynamic scaling coefficient derived from maximum queue lengths enables assumption-free estimation of total regional vehicles when applied to the floating car population. Validation using Chengdu data demonstrates significant improvements: unary cubic curves achieve optimal fitting for MFD relationships (R2 up to 0.9157); the HMM-CRF hybrid map-matching algorithm reduces average position error by 29% and intersection mismatch rate by approximately 40%; simulation results show queue length estimation accuracy of RMSE 22.8m and MAPE 18.5%, while MFD estimation error for maximum network flow drops from −17.5% to −3.5%, representing an 80% relative accuracy improvement. The proposed methodology provides robust technical support for urban road network assessment and management by enabling high-precision acquisition of MFDs from floating car data, effectively addressing critical challenges in macroscopic traffic modeling and monitoring. This advancement presents potential value for perimeter control applications and other MFD-based traffic management strategies.
Suggested Citation
Xiaojuan Lu & Jiamei Zhang & Qingling He & Shiyu Zheng & Juan Su, 2026.
"Data-driven derivation of macroscopisc fundamental diagram from floating car trajectories,"
PLOS ONE, Public Library of Science, vol. 21(2), pages 1-26, February.
Handle:
RePEc:plo:pone00:0342070
DOI: 10.1371/journal.pone.0342070
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0342070. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.