Author
Listed:
- Jiamin Sun
- Zhongjie Zhu
- Renwei Tu
- Zhibo Xie
Abstract
In Versatile Video Coding (VVC), the partition patterns for coding units (CUs) have significant impact on the encoding efficiency. Determining the optimal CU partition is particularly time-consuming due to the calculation and comparison of rate-distortion costs for all possible partition patterns, especially during the ternary tree (TT) partitioning in intra coding. In this paper, a fast decision mechanism is proposed for TT partitioning based on image feature analysis to skip the complex rate-distortion calculation. Firstly, the correlation between the image structural features and the TT partition patterns is investigated based on experimental analysis and the most relevant features are selected for the subsequent prediction of optimal TT partition patterns. Secondly, we devise an efficient scheme for representing and extracting the selected features, further optimizing the extraction process to minimize computational complexity. Comprehensive datasets for partition pattern prediction are constructed based on these refined features. Finally, these datasets serve as the foundation for training and optimizing a predictive model, which is designed to achieve an optimal trade-off between prediction accuracy and model complexity. The predictive model is seamlessly incorporated into the VVC Test Model (VTM), facilitating efficient feature extraction prior to the Rate-Distortion Optimization (RDO) process for intra prediction and optimal partition pattern selection. By leveraging the prediction results, the model effectively determines whether TT partitioning can be bypassed, thereby streamlining the decision-making process and enhancing overall coding efficiency. Experimental results demonstrate that in comprehensive performance evaluations of time-saving metrics and Bjøntegaard Delta Bit Rate (BDBR), the proposed mechanism significantly outperforms existing lightweight neural network algorithms. Our decision mechanism effectively preserves coding quality while substantially accelerating the video coding process.
Suggested Citation
Jiamin Sun & Zhongjie Zhu & Renwei Tu & Zhibo Xie, 2026.
"Fast decision mechanism for ternary tree partitioning in VVC intra coding,"
PLOS ONE, Public Library of Science, vol. 21(2), pages 1-14, February.
Handle:
RePEc:plo:pone00:0341803
DOI: 10.1371/journal.pone.0341803
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0341803. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.