Author
Abstract
Remaining Useful Life (RUL) prediction is crucial for implementing predictive maintenance strategies, however, RUL prediction is severely constrained by the lack of high-quality labeled life-cycle data. Moreover, complex coupling relationships exist within the obtained multidimensional degradation data, making it difficult to construct an accurate health index (HI) for the system. To address this challenge, we propose an RUL prediction method based on sequential healthy index evaluation which incorporate two parts: the parameter prediction process and the health index fusion process. The core innovation of this study is an RUL prediction method that integrates a CNN-Transformer hybrid model with a sequential health index evaluation scheme. Compared to traditional data-driven methods, our approach incorporates a chunk-interaction mechanism into the multi-head attention design, thereby reducing model complexity and computational demands. Simultaneously, the sequential evaluation scheme dynamically constructs the health index based on the Mahalanobis distance and the Sequential Evaluation Ratio (SER), which eliminates the reliance on high-quality labeled life-cycle data. Experimental results demonstrate that the proposed method outperforms existing deep learning approaches (such as LSTM, Transformer, and Att-BiGRU) across multiple datasets, exhibiting higher prediction accuracy and robustness, particularly in label-scarce scenarios.
Suggested Citation
Feng Han & Bo Mo, 2026.
"RUL prediction method based on sequential health index evaluation with multidimensional coupled degradation data,"
PLOS ONE, Public Library of Science, vol. 21(1), pages 1-24, January.
Handle:
RePEc:plo:pone00:0340645
DOI: 10.1371/journal.pone.0340645
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0340645. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.