Author
Listed:
- Huirong Tan
- Yanruixue Xie
Abstract
This study aims to improve the identification of potential credit risks in unstructured financial texts. It addresses the core problem of financial text analysis and credit risk assessment by proposing a hybrid model that combines the generative semantic understanding of Generative Pre-trained Transformer-4 (GPT-4) with the enhanced feature extraction of Bidirectional Encoder Representations from Transformers (BERT). To overcome the limitations of traditional methods—such as weak contextual reasoning in long texts, insufficient recognition of industry-specific terminology, and implicit credit risk expressions—the model incorporates a financial dictionary enhancement module and a named entity recognition (NER) component. GPT-4 is leveraged for prompt-based generation to extract latent risk information from complex texts, including annual reports. A dual-model semantic fusion mechanism with attention weighting constructs a multi-level risk assessment system that integrates contextual understanding, industry adaptability, and interpretability. Experiments on multiple publicly available financial datasets and real-world annual reports demonstrate the model’s effectiveness. Results show that the proposed approach outperforms representative baseline models in accuracy, adaptability, and interpretability. This work carries both theoretical and practical significance for research at the intersection of financial technology and natural language processing.
Suggested Citation
Huirong Tan & Yanruixue Xie, 2025.
"Financial text analysis and credit risk assessment using a GPT-4 and improved BERT fusion model,"
PLOS ONE, Public Library of Science, vol. 20(11), pages 1-15, November.
Handle:
RePEc:plo:pone00:0336217
DOI: 10.1371/journal.pone.0336217
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0336217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.