Author
Listed:
- Tianke Fang
- Zhenxing Hui
- Zhiying Xie
- Peng Yu
- Yi Gao
- Songdi Shi
- Yuanrong He
Abstract
To improve the accuracy and efficiency of crack segmentation in ancient wooden structures, we propose a lightweight deep neural network architecture, termed SMG-Net. The core innovation of this model lies in its multi-cooperative perception mechanism. First, the proposed Structure-Aware Cross-directional Pooling (SACP) establishes long-range feature dependencies in multiple orientations, addressing the challenge of coherent recognition for cracks with complex directions. Second, the Multi-path Robust Feature Extraction (MRFE) module enhances the tolerance of the model to noise and blurred edges, thereby improving the discriminative capability of shallow features. Third, the Guided Semantic–Spatial Fusion (GSSFusion) mechanism enables efficient alignment and integration of multi-scale features, ensuring both fine crack details and global structural consistency in segmentation. Extensive experiments were conducted on a self-constructed dataset of cracks in ancient wooden components and the public Masonry crack dataset. SMG-Net achieved mean Intersection-over-Union (mIoU) scores of 81.12% and 87.91%, and Pixel Accuracy (PA) of 98.91% and 98.99%, respectively, significantly outperforming mainstream approaches such as U-Net, SegFormer, and Swin-UNet, with results confirmed by statistical significance testing. Moreover, SMG-Net demonstrates superior parameter efficiency and inference speed, making it particularly suitable for heritage monitoring scenarios with limited computational resources. To promote reproducibility and future research, the source code and datasets have been made publicly available at: https://github.com/HuiZhenxing/HuiZhenxing.git.
Suggested Citation
Tianke Fang & Zhenxing Hui & Zhiying Xie & Peng Yu & Yi Gao & Songdi Shi & Yuanrong He, 2025.
"SMG-Net: A lightweight modular architecture for fine-grained crack segmentation in ancient wooden structures,"
PLOS ONE, Public Library of Science, vol. 20(11), pages 1-25, November.
Handle:
RePEc:plo:pone00:0336125
DOI: 10.1371/journal.pone.0336125
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0336125. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.