Author
Listed:
- Erdal Eker
- Davut Izci
- Serdar Ekinci
- Fahmi Elsayed
- Mohammad Salman
Abstract
Accurate and energy-efficient temperature regulation in electric furnace systems remains a challenging control problem due to nonlinear dynamics, significant thermal inertia, and inevitable time delays. Conventional proportional–integral–derivative (PID) and PID–acceleration (PIDA) controllers, though widely used, often exhibit degraded performance under such conditions, particularly when implemented in a single-degree-of-freedom. To address these limitations, this study proposes, for the first time, a two-degree-of-freedom (2-DOF) PIDA controller tailored for electric furnace temperature control. The controller structure allows independent tuning of set-point tracking and disturbance rejection by introducing separate feedforward paths in the proportional and derivative channels while maintaining integral and acceleration actions on the error signal. To optimize the controller parameters, the recently developed greater cane rat algorithm (GCRA) is employed for the first time in this context. A novel adaptive objective function (combining normalized overshoot, normalized settling time, and cumulative tracking error) guides the tuning process to achieve a balanced improvement in both transient and steady-state performance. The proposed GCRA-based 2-DOF PIDA controller is evaluated through extensive simulations and compared against state-of-the-art metaheuristic tuning approaches, including polar fox optimization (PFA), hiking optimization (HOA), success-history based adaptive differential evolution with linear population size reduction (L-SHADE), and particle swarm optimization (PSO), as well as several benchmark furnace control methods. Results demonstrate that the proposed method consistently achieves faster settling times, reduced overshoot, and near-zero steady-state error, while maintaining robustness under external disturbances and measurement noise. For instance, in the nominal case, the method yields an overshoot of 1.8382% and a settling time of 3.4542 s, outperforming PFA, HOA, L-SHADE, and PSO. Robustness tests under load disturbances and measurement noise confirm stable operation with minimal performance degradation, achieving less than 2.5% overshoot and under 4 s settling time across all evaluated scenarios. These findings highlight the potential of the GCRA-based 2-DOF PIDA controller as a high-precision and energy-efficient solution for temperature regulation in industrial time-delay systems.
Suggested Citation
Erdal Eker & Davut Izci & Serdar Ekinci & Fahmi Elsayed & Mohammad Salman, 2025.
"A Novel 2-DOF PIDA control strategy with GCRA-based parameter optimization for electric furnace temperature control,"
PLOS ONE, Public Library of Science, vol. 20(10), pages 1-19, October.
Handle:
RePEc:plo:pone00:0334594
DOI: 10.1371/journal.pone.0334594
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0334594. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.