Author
Listed:
- Hui Shen
- Yue Liu
- Boyan Zou
- Kaodui Li
Abstract
This research introduces an innovative agricultural carbon accounting approach for straw burning that combines stochastic process modeling with LSTM neural networks. Traditional methods face limitations including high uncertainty, fragmented data, and prohibitive real-time monitoring costs. Our off-site inverse carbon accounting methodology employs three-dimensional Brownian motion to simulate carbon molecular diffusion patterns, incorporating horizontally drifted motion influenced by wind speed and vertically truncated motion dominated by thermal activity. The framework utilizes LSTM-based time-series predictions to generate virtual diffusion path samples for dynamic model calibration. By quantifying the probability density function of carbon molecular diffusion, we inversely derive carbon emission rates from particle arrival probabilities at observation points. Validation through a straw-burning case demonstrates an average carbon emission rate of 0.0049 tons/second with error margins below 10%, confirming the method’s accuracy. This approach overcomes limitations of traditional emission factor methods while providing cost-effective real-time carbon monitoring for agricultural contexts. Future research could integrate multi-physics models, remote sensing data, and advanced computational techniques like quantum computing to enhance scalability and precision. This work establishes a foundation for data-driven carbon governance in agricultural supply chains, supporting global carbon neutrality efforts.
Suggested Citation
Hui Shen & Yue Liu & Boyan Zou & Kaodui Li, 2026.
"A new method of off-site inverse carbon accounting and its application in agriculture carbon measurement,"
PLOS ONE, Public Library of Science, vol. 21(2), pages 1-15, February.
Handle:
RePEc:plo:pone00:0334270
DOI: 10.1371/journal.pone.0334270
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0334270. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.