Author
Listed:
- Xin Liu
- Han Wang
- Zhiyong Du
- Xu Xu
- Bo Song
Abstract
Accurate diagnosis of rolling bearing faults is vital for the safe operation of rotating machinery. However, real-world fault datasets often suffer from severe class imbalance, which hinders the performance of deep learning models. To address this challenge, we propose PFRNet, a novel diagnostic framework integrating a Poisson Flow-based generative model with a lightweight residual network. Raw vibration signals are transformed into time-frequency representations via CWT to capture non-stationary fault features. The Poisson generative mechanism models sample evolution in high-dimensional latent space to synthesize realistic minority-class samples by learning statistical distributions of real data, mitigating imbalance. These augmented datasets are subsequently classified using an efficient residual network designed for robust feature extraction with minimal complexity. Experiments on the CWRU benchmark demonstrate that PFRNet outperforms state-of-the-art methods in diagnostic accuracy, robustness, and generalization across various imbalance scenarios. Quantitative evaluations further confirm that the generated samples closely resemble real data in both quality and diversity, supporting the effectiveness of the proposed method. The proposed approach offers a promising solution for reliable fault diagnosis under practical, imbalance-prone industrial conditions.
Suggested Citation
Xin Liu & Han Wang & Zhiyong Du & Xu Xu & Bo Song, 2025.
"A poisson flow-based data augmentation and lightweight diagnosis framework for imbalanced rolling bearing faults,"
PLOS ONE, Public Library of Science, vol. 20(10), pages 1-22, October.
Handle:
RePEc:plo:pone00:0332994
DOI: 10.1371/journal.pone.0332994
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0332994. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.