IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0332709.html

UMOT: A unified framework for long- and short-term association for multi-object tracking

Author

Listed:
  • Yinghong Xie
  • Yongxing Ke
  • Xiaowei Han
  • Qiang Gao
  • Chongli Wang

Abstract

Multi-object tracking (MOT) is an important research direction in the field of computer vision, but it often leads to problems such as trajectory breakage and identity switches in complex scenarios due to the similarity of target appearance and long-term occlusions. Although the existing Transformer-based end-to-end methods have made some breakthroughs in short-term motion modelling, they are still deficient in long-term dependent information modelling and target recovery. To this end, this paper proposes a unified framework for long-term and short-term association, UMOT, which fundamentally alleviates the contradiction between motion prediction between neighboring frames and long-term trajectory recovery across frames. UMOT constructs short-term correlation using pre-trained YOLOX detector and MOTR-ConvNext network, and through the dynamically updated track queries and detect queries jointly to build the motion and appearance feature models of targets between adjacent frames to optimize the short-term motion prediction. Meanwhile, it effectively stores and smoothly updates the historical trajectory information by designing the Track Query Memory Module (TQMM) and associates the unmatched detections across frames by the Historical backtracking Module, so as to realize the restoration of the long-term lost targets and the identity preservation. Extensive experiments on DanceTrack and MOT17 datasets show that UMOT achieves significant improvement in HOTA, IDF1 and other metrics compared to existing state-of-the-art methods, which verifies its robustness and effectiveness in complex occlusion and long-term dependency scenarios.

Suggested Citation

  • Yinghong Xie & Yongxing Ke & Xiaowei Han & Qiang Gao & Chongli Wang, 2025. "UMOT: A unified framework for long- and short-term association for multi-object tracking," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-30, September.
  • Handle: RePEc:plo:pone00:0332709
    DOI: 10.1371/journal.pone.0332709
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0332709
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0332709&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0332709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2025. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," Management Science, INFORMS, vol. 71(3), pages 2508-2526, March.
    3. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    4. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    5. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    6. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    7. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    8. Zhou, Shiqi & Lin, Meng & He, Jun & Wu, Yuzeng & Wang, Xu, 2025. "Unsupervised clustering research of nuclear power plants under unlabeled unknown fault diagnosis scenario," Energy, Elsevier, vol. 326(C).
    9. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    10. Samyajoy Pal & Christian Heumann, 2025. "Revisiting Dirichlet Mixture Model: unraveling deeper insights and practical applications," Statistical Papers, Springer, vol. 66(1), pages 1-38, January.
    11. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    12. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    13. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    14. Robert M. Curry & Joseph Foraker & Gary Lazzaro & David M. Ruth, 2024. "Practice Summary: Optimal Student Group Reassignment at U.S. Naval Academy," Interfaces, INFORMS, vol. 54(3), pages 205-210, May.
    15. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    16. Andrea Flori & Alessandro Spelta, 2025. "Carbon trade biases and the emerging mesoscale structure of the European Emissions Trading System network," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    17. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    18. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    19. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global Scientific Publishing, vol. 7(2), pages 39-61, April.
    20. Caplin, Andrew & Leahy, John, 2020. "Comparative statics in markets for indivisible goods," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 80-94.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0332709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.