Author
Listed:
- Kaihao Liang
- Yuqiu Chen
- Tinghong Guo
- Tieshan He
Abstract
This paper aims to measure credit risks of unlisted agricultural enterprises by using the KMV model integrating a CNN-BiLSTM neural network. Initially, the expected default frequencies (EDF) for each listed agricultural enterprise are computed using the Black-Scholes option pricing formula within the KMV framework. We apply the neural network model trained by listed agricultural enterprises to the credit risk analysis of unlisted agricultural enterprises. The EDF and financial data of listed agricultural enterprises undergo Z-score standardization and comparison using CNN-BiLSTM neural networks. Model parameters are then experimented with to determine the optimal CNN-BiLSTM model. This selected optimal CNN-BiLSTM model is applied to standardized financial data of unlisted agricultural enterprises to derive corresponding EDF. Based on the EDF of the listed agricultural enterprises, corresponding rating intervals are determined for unlisted agricultural enterprises. We use unlisted companies in China as an example in empirical analysis. The results demonstrate the effective assessment of credit ratings for unlisted agricultural enterprises using this model, generally aligning with institutional rating outcomes. Given differences in rating systems, the model helps identify hidden credit risks that are challenging to detect through conventional rating methods. It highlights the nonlinear relationship between enterprise credit risks and financial indicators, including debt repayment capacity, operational capability, growth potential, profitability, and debt structure.
Suggested Citation
Kaihao Liang & Yuqiu Chen & Tinghong Guo & Tieshan He, 2025.
"Measurement model of credit risk for unlisted agricultural enterprises,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-15, September.
Handle:
RePEc:plo:pone00:0332124
DOI: 10.1371/journal.pone.0332124
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0332124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.