Author
Listed:
- Yanxuan Wu
- Fu Li
- Hao Chen
- Liang Shi
- Meng Yin
- Fan Hu
- Gongchang Yu
Abstract
Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia. Nevertheless, there are currently no well-developed methods for identifying low muscle mass in individuals with MetS. Methods: A total of 2,467 MetS patients (aged 18–59 years) with low muscle mass assessed by dual-energy X-ray absorptiometry (DXA) were included using data from the 2011–2018 National Health and Nutrition Examination Survey (NHANES). Least Absolute Shrinkage and Selection Operator (LASSO) regression was then used to screen for important features. A total of nine Machine learning (ML) models were constructed in this study. Area under the curve (AUC), F1 Score, Recall, Precision, Accuracy, Specificity, PPV, and NPV were used to evaluate the model’s performance and explain important predictors using the Shapley Additive Explain (SHAP) values. Results: The Logistic Regression (LR) model performed the best overall, with an AUC of 0.925 (95% CI: 0.9043, 0.9443), alongside strong F1-score (0.87) and specificity (0.89). Five important predictors are displayed in the summary plot of SHAP values: height, gender, waist circumference, thigh length, and alkaline phosphatase (ALP). Conclusion: This study developed an interpretable ML model based on SHAP methodology to identify risk factors for low muscle mass in a young population of MetS patients. Additionally, a web-based tool was implemented to facilitate sarcopenia screening.
Suggested Citation
Yanxuan Wu & Fu Li & Hao Chen & Liang Shi & Meng Yin & Fan Hu & Gongchang Yu, 2025.
"Construct prediction models for low muscle mass with metabolic syndrome using machine learning,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-18, September.
Handle:
RePEc:plo:pone00:0331925
DOI: 10.1371/journal.pone.0331925
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0331925. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.