Author
Listed:
- Zhongfeng Li
- Lei Liu
- Zhenlong Zhao
- Shujie Mu
- Dong Li
- Yuting Zhuo
Abstract
Coal blending in thermal power plants is a complex multi-objective challenge involving economic, operational and environmental considerations. This study presents a Q-learning-enhanced NSGA-II (QLNSGA-II) algorithm that integrates the adaptive policy optimization of Q-learning with the elitist selection of NSGA-II to dynamically adjust crossover and mutation rates based on real-time performance metrics. A physics-based objective function takes into account the thermodynamics of ash fusion and the kinetics of pollutant emission, ensuring compliance with combustion efficiency and NOx limits. Benchmark tests on the Walking Fish Group (WFG) and Unconstrained Function (UF) suites show that QLNSGA-II achieves a 12.7% improvement in Inverted Generational Distance (IGD) and a 9.3% improvement in Hypervolume (HV) compared to prevailing algorithms. Industrial validation at the Huaneng Yingkou power plant confirms a 14.7% reduction in fuel cost and a 41% reduction in slagging incidence over conventional blending methods, backed by 12 months of operational data. Other benefits include a 24.8% reduction in sulphur content, a 6.9% increase in the plant’s net heat rate and annual savings of RMB 12.3 million, 2,150 tonnes of limestone and 38,500 tonnes of CO2-equivalent emissions. These results highlight QLNSGA-II as a scalable, robust solution for multi-objective coal blending, offering a promising way to improve the efficiency and sustainability of coal-fired power generation.
Suggested Citation
Zhongfeng Li & Lei Liu & Zhenlong Zhao & Shujie Mu & Dong Li & Yuting Zhuo, 2025.
"Reinforcement learning-enhanced multi-objective optimization for sustainable coal blending in thermal power plants,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-25, September.
Handle:
RePEc:plo:pone00:0331208
DOI: 10.1371/journal.pone.0331208
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0331208. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.