Author
Listed:
- Md Nabil Zawad
- Mohammed Almannaa
- Khalid F Alkahtani
Abstract
Animal-vehicle crashes (AVC) pose risks in rural areas, often leading to casualties and injuries. Despite their infrequent occurrence, AVC can have significant consequences, especially when larger animals are involved. This study investigates factors contributing to fatalities and injuries resulting from animal-involved collisions. It examines 24 variables using 1403 animal-vehicle crash observations on intercity and major intra-city roads from 2016–2021. The study employs a random parameters logit model (RPLM) and ensemble machine learning approaches to explore the contributory factors in crashes. The RPLM accounts for unobserved heterogeneity, identifying significant variables. Meanwhile, the ensemble learner and Shapley Additive exPlanations (SHAP) provide further insights. Key findings show that expressways, roads with one or two lanes per direction, horizontal curvature, and structurally poor pavement surfaces increase the risk of severe crashes, i.e., fatalities and injuries. Side fence barriers and speed bumps also impact crash severity. The absence of side fencing and damaged fencing both positively influence severe crashes, while the presence of speed bumps is likely to increase severe crashes. Camel exposure, vacation-period crashes, and adverse weather also play positive roles. However, heavy truck involvement is negatively associated with severe crashes. Policymakers and road safety authorities can use these findings to implement effective countermeasures to prevent such collisions.
Suggested Citation
Md Nabil Zawad & Mohammed Almannaa & Khalid F Alkahtani, 2025.
"Investigating factors influencing fatalities and injuries in animal-vehicle crashes using a random parameters logit model and ensemble machine learning approaches,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-20, September.
Handle:
RePEc:plo:pone00:0331197
DOI: 10.1371/journal.pone.0331197
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0331197. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.