Author
Listed:
- Li Guan
- Haitao Zhang
- Yijun Zhou
- Xinyu Du
- Mingxuan Li
Abstract
In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness. To improve robustness, a plug-and-play Wavelet-Attentive Multiband Fusion Module (WAMF) is designed, achieving decoupling of low-frequency and high-frequency features and adaptive multi-frequency fusion. To effectively aggregate multi-scale features, a Bottleneck-Enhanced Dilated U-Conv Module (BEDU) is designed, fusing global and local information with lower computational resource consumption. To address feature fusion, a Bidirectional Depthwise Cross-Attention Module (BDCA) is designed to replace simple concatenation and convolution operations, achieving adaptive feature fusion. YOLOv11-WBD undergoes rigorous evaluation on the public NEU-DET and GC10-DET datasets; experimental results show that the improved model achieves performance gains on both datasets: the mAP@0.5 metric increased by 5.8% and 2.8% respectively. Furthermore, the improved model demonstrates stronger noise tolerance, maintaining high defect detection capability even in moderate noise environments, providing a valuable solution for industrial applications.
Suggested Citation
Li Guan & Haitao Zhang & Yijun Zhou & Xinyu Du & Mingxuan Li, 2025.
"YOLOv11-WBD: A wavelet-bidirectional network with dilated perception for robust metal surface defect detection,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-23, September.
Handle:
RePEc:plo:pone00:0331025
DOI: 10.1371/journal.pone.0331025
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0331025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.