Author
Listed:
- Ma Haohao
- Azizan As’arry
- Niu Jing
- Mohd Idris Shah Ismail
- Hafiz Rashidi Ramli
- M Y M Zuhri
- Aidin Delgoshaei
Abstract
In this study, an adaptive force-position-speed collaborative process planning framework for robot polishing was proposed to improve the stability of the robot polishing process. The material removal model based on Preston’s theory was studied, and the factors of polishing pressure, tool speed, feed speed, and sandpaper type were considered to design the manual polishing experiment. The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. For curved workpieces, the curvature adaptive interpolation method is introduced to generate trajectories. An adaptive impedance control strategy is implemented to enhance force control, and PD iteration and RBF neural networks are used to ensure stable contact force and accuracy. The experimental results show that the root mean square error (RMSE) accuracy of the established roughness prediction model reaches 0.0001 µm, the proposed force control method is more stable, and the surface roughness is reduced by 20.79% on average compared to the baseline method, which proves the effectiveness of the framework in achieving high precision and high efficiency of robot polishing.
Suggested Citation
Ma Haohao & Azizan As’arry & Niu Jing & Mohd Idris Shah Ismail & Hafiz Rashidi Ramli & M Y M Zuhri & Aidin Delgoshaei, 2025.
"Adaptive force-position-speed collaborative process planning and roughness prediction for robotic polishing,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-32, September.
Handle:
RePEc:plo:pone00:0330979
DOI: 10.1371/journal.pone.0330979
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330979. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.