Author
Listed:
- Manju M. S.
- Harsh Pateriya
- Rajeev Kumar Gupta
- Deepak Singh Tomar
- Punit Gupta
- Asmir Butkovic
Abstract
Tropical cyclones pose significant threats to coastal regions, and have a major negative influence on the environment and society. Precise cyclone identification and intensity estimation are crucial for effective early warning systems and disaster prevention. Traditional methods rely on manual interpretation and empirical models, often lacking efficiency and accuracy. This study proposes a deep learning framework that utilizes satellite image sequences for cyclone detection, classification, and intensity estimation. Unlike conventional models relying solely on spatial or manual features, the proposed hybrid architecture integrates Convolutional Neural Networks (CNNs) and ConvLSTM to learn spatiotemporal patterns jointly. Key innovations include the clustering-based cyclone region isolation method, sequence-level data augmentation, and the use of SMOTE to mitigate class imbalance. The proposed approach demonstrates substantial improvement in accuracy over baseline models, achieving 99.16% accuracy for binary classification using VGG16. An accuracy of 81.1 ± 4.33% across cyclone intensity levels, and an RMSE of 7.79 ± 1.27 knots in wind speed prediction using the ConvLSTM-based model. All models are evaluated using 5-fold cross-validation on CIMSS Tropical Data Archive and IMD Best-Track datasets. Overall, these results show an exciting potential for future use of deep learning for real time forecasting and early warning systems. Future work will also look to improve or increase model generalization, either through using ensemble learning, or potentially more complex architectures and larger datasets.
Suggested Citation
Manju M. S. & Harsh Pateriya & Rajeev Kumar Gupta & Deepak Singh Tomar & Punit Gupta & Asmir Butkovic, 2025.
"ConvLSTM-based tropical cyclone intensity estimation and classification using satellite imagery over the North Indian ocean,"
PLOS ONE, Public Library of Science, vol. 20(12), pages 1-24, December.
Handle:
RePEc:plo:pone00:0330705
DOI: 10.1371/journal.pone.0330705
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.