Author
Listed:
- Xueri Li
- Lei Yang
- Shimin Liang
- Jianfang Wu
Abstract
Image super-resolution reconstructs high-resolution images from low-resolution inputs. However, current single-image super-resolution techniques often struggle to capture multi-scale information and extract high-frequency details, which compromises reconstruction quality. Moreover, the prevalent feed-forward network architectures lack robust feedback mechanisms for iterative refinement and enhanced acquisition of high-frequency information. To overcome these limitations, this research develops advanced strategies for multi-scale feature extraction, fusion, and feedback in single-image super-resolution. We propose an innovative error-driven, multi-scale dense residual network (EMDN) that retains a feed-forward structure while integrating error-driven feedback. Specifically, our approach utilizes dual multi-scale features: one derived from convolutional kernels of varying sizes and another extracted from diverse inputs, both processed concurrently. Comparative evaluations across different scaling factors demonstrate that our method outperforms existing approaches in both subjective and objective assessments. In particular, compared to the baseline feed-forward network, our model achieves improvements of up to 0.385% in peak signal-to-noise ratio and 0.191% in structural similarity index measure. The experimental results validate the effectiveness and practical significance of our proposed method in enhancing image resolution and restoration quality.
Suggested Citation
Xueri Li & Lei Yang & Shimin Liang & Jianfang Wu, 2025.
"Multi-scale error-driven dense residual network for image super-resolution reconstruction,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-19, September.
Handle:
RePEc:plo:pone00:0330615
DOI: 10.1371/journal.pone.0330615
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.