Author
Listed:
- Bryan Verhoef
- Rutger Hermsen
- Joost de Graaf
Abstract
Bacterial colonies can form a wide variety of shapes and structures based on ambient and internal conditions. To help understand the mechanisms that determine the structure of and the diversity within these colonies, various numerical modeling techniques have been applied. The most commonly used ones are continuum models, agent-based models, and lattice models. Continuum models are usually computationally fast, but disregard information at the level of the individual, which can be crucial to understanding diversity in a colony. Agent-based models resolve local details to a greater level, but are computationally costly. Lattice-based approaches strike a balance between these two limiting cases. However, this is known to come at the price of introducing undesirable artifacts into the structure of the colonies. For instance, square lattices tend to produce square colonies even where an isotropic shape is expected. Here, we aim to overcome these limitations and we therefore study lattice-induced orientational symmetry in a class of hybrid numerical methods that combine aspects of lattice-based and continuum descriptions. We characterize these artifacts and show that they can be circumvented through the use of a disordered lattice which derives from an unstructured fluid. The main advantage of this approach is that the lattice itself does not imbue the colony with a preferential directionality. We demonstrate that our implementation enables the study of colony growth involving millions of individuals within hours of computation time on an ordinary desktop computer, while retaining many of the desirable features of agent-based models. Furthermore, our method can be readily adapted for a wide range of applications, opening up new avenues for studying the formation of colonies with diverse shapes and complex internal interactions.
Suggested Citation
Bryan Verhoef & Rutger Hermsen & Joost de Graaf, 2025.
"Fluid-derived lattices for unbiased modeling of bacterial colony growth,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-24, August.
Handle:
RePEc:plo:pone00:0330491
DOI: 10.1371/journal.pone.0330491
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330491. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.