Author
Listed:
- Sajida Perveen
- Muhammad Shahbaz
- Sami S Albouq
- Khlood Shinan
- Hanan E Alhazmi
- Fatmah Alanazi
- M Usman Ashraf
- Rehan Ashraf
Abstract
The rise of social media has revolutionized information dissemination, creating new opportunities but also significant challenges. One such challenge is the proliferation of fake news, which undermines the credibility of journalism and contributes to societal unrest. Manually identifying fake news is impractical due to the vast volume of content, prompting the development of automated systems for fake news detection. This challenge has motivated numerous research efforts aimed at developing automated systems for fake news detection. However, most of these approaches rely on supervised learning, which requires significant time and effort to construct labeled datasets. While there have been a few attempts to develop unsupervised methods for fake news detection, their reported accuracy results thereof remain unsatisfactory. This research proposes an unsupervised approach using clustering algorithms, including Gaussian Mixture Model (GMM), K-means, and K-medoids, to eliminate the need for manual labeling in detecting fake news. In particular, it also proposes a novel hybrid method that leverages the Gaussian Mixture Model (GMM) in conjunction with the Group Counseling Optimizer (GCO), a metaheuristic optimization algorithm, to identify the optimal number of clusters for the detection of fake news. The comparative analysis of the evaluation results on real-world data demonstrated that the proposed hybrid GMM outperforms the state-of-the-art techniques, with a silhouette score of 0.77, ARI of 0.83, and a purity score of 0.88, indicating a significantly improved quality of clustering results.
Suggested Citation
Sajida Perveen & Muhammad Shahbaz & Sami S Albouq & Khlood Shinan & Hanan E Alhazmi & Fatmah Alanazi & M Usman Ashraf & Rehan Ashraf, 2025.
"Unsupervised fake news detection on social media using hybrid Gaussian Mixture Model,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-26, August.
Handle:
RePEc:plo:pone00:0330421
DOI: 10.1371/journal.pone.0330421
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330421. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.