Author
Listed:
- Kai Zhang
- Po-Chung Chen
- YiYang Huang
- Shiow-Jyu Tzou
- Sheng-Tang Wu
- Ta-Wei Chu
- Chung-Che Wang
- Jyh-Shing Roger Jang
Abstract
In response to Taiwan’s rapidly aging population and the rising demand for personalized health care, accurately assessing individual physiological aging has become an essential area of study. This research utilizes health examination data to propose a machine learning-based biological age prediction model that quantifies physiological age through residual life estimation. The model leverages LightGBM, which shows an 11.40% improvement in predictive performance (R-squared) compared to the XGBoost model. In the experiments, the use of MICE imputation for missing data significantly enhanced prediction accuracy, resulting in a 23.35% improvement in predictive performance. Kaplan-Meier (K-M) estimator survival analysis revealed that the model effectively differentiates between groups with varying health levels, underscoring the validity of biological age as a health status indicator. Additionally, the model identified the top ten biomarkers most influential in aging for both men and women, with a 69.23% overlap with Taiwan’s leading causes of death and previously identified top health-impact factors, further validating its practical relevance. Through multidimensional health recommendations based on SHAP and PCC interpretations, if the health recommendations provided by the model are implemented, 64.58% of individuals could potentially extend their life expectancy. This study provides new methodological support and data backing for precision health interventions and life extension.
Suggested Citation
Kai Zhang & Po-Chung Chen & YiYang Huang & Shiow-Jyu Tzou & Sheng-Tang Wu & Ta-Wei Chu & Chung-Che Wang & Jyh-Shing Roger Jang, 2025.
"Prediction of biological age using machine learning,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-31, September.
Handle:
RePEc:plo:pone00:0330184
DOI: 10.1371/journal.pone.0330184
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.