Author
Listed:
- YuZhi Chen
- HaoYue Sun
- Liang Tian
- Ye Yang
- ShenYang Wang
- TianYou Wang
Abstract
Motivation: Infrared unmanned aerial vehicle (UAV) detection for surveillance applications faces three conflicting requirements: accurate detection of pixel-level thermal signatures, real-time processing capabilities, and deployment feasibility on resource-constrained edge devices. Current deep learning approaches typically optimize for one or two of these objectives while compromising the third. Method: This paper presents YOLO11-AU-IR, a lightweight instance segmentation framework that addresses these challenges through three architectural innovations. First, Efficient Adaptive Downsampling (EADown) employs dual-branch processing with grouped convolutions to preserve small-target spatial features during multi-scale fusion. Second, HeteroScale Attention Network (HSAN) implements grouped multi-scale convolutions with joint channel-spatial attention mechanisms for enhanced cross-scale feature representation. These architectural optimizations collectively reduce computational requirements while maintaining detection accuracy. Third, Adaptive Threshold Focal Loss (ATFL) introduces epoch-adaptive parameter tuning to address the extreme foreground-background imbalance inherent in infrared UAV imagery. Results: YOLO11-AU-IR is evaluated on the AUVD-Seg300 dataset, achieving 97.7% mAP@0.50 and 75.2% mAP@0.50:0.95, surpassing the YOLO11n-seg baseline by 1.7% and 4.4%, respectively. The model reduces parameters by 24.5% and GFLOPs by 11.8% compared to YOLO11n-seg, while maintaining real-time inference at 59.8 FPS on an NVIDIA RTX 3090 with low variance. On the NVIDIA Jetson TX2, under INT8 CPU-only deployment, YOLO11-AU-IR retains 95% mAP@0.50 with minimal memory footprint and stable performance, demonstrating its practical edge compatibility. Ablation studies further confirm the complementary contributions of EADown, HSAN, and ATFL in enhancing accuracy, robustness, and efficiency. Code and dataset are publicly available at https://github.com/chen-yuzhi/YOLO11-AU-IR.
Suggested Citation
YuZhi Chen & HaoYue Sun & Liang Tian & Ye Yang & ShenYang Wang & TianYou Wang, 2025.
"Detecting infrared UAVs on edge devices through lightweight instance segmentation,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-31, August.
Handle:
RePEc:plo:pone00:0330074
DOI: 10.1371/journal.pone.0330074
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330074. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.