Author
Listed:
- Ming Li
- Jingang Ma
- Jing Zhao
Abstract
Since Transformers have demonstrated excellent performance in the segmentation of two-dimensional medical images, recent works have also introduced them into 3D medical segmentation tasks. For example, hierarchical transformers like Swin UNETR have reintroduced several prior knowledge of convolutional networks, further enhancing the model’s volumetric segmentation ability on three-dimensional medical datasets. The effectiveness of these hybrid architecture methods is largely attributed to the large number of parameters and the large receptive fields of non-local self-attention. We believe that large-kernel volumetric depthwise convolutions can obtain large receptive fields with fewer parameters. In this paper, we propose a lightweight three-dimensional convolutional network, LKDA-Net, for efficient and accurate three-dimensional volumetric segmentation. This network adopts a large-kernel depthwise convolution attention mechanism to simulate the self-attention mechanism of Transformers. Firstly, inspired by the Swin Transformer module, we investigate different-sized large-kernel convolution attention mechanisms to obtain larger global receptive fields, and replace the MLP in the Swin Transformer with the Inverted Bottleneck with Depthwise Convolutional Augmentation to reduce channel redundancy and enhance feature expression and segmentation performance. Secondly, we propose a skip connection fusion module to achieve smooth feature fusion, enabling the decoder to effectively utilize the features of the encoder. Finally, through experimental evaluations on three public datasets, namely Synapse, BTCV and ACDC, LKDA-Net outperforms existing models of various architectures in segmentation performance and has fewer parameters. Code: https://github.com/zouyunkai/LKDA-Net.
Suggested Citation
Ming Li & Jingang Ma & Jing Zhao, 2025.
"LKDA-Net: Hierarchical transformer with large Kernel depthwise convolution attention for 3D medical image segmentation,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-23, August.
Handle:
RePEc:plo:pone00:0329806
DOI: 10.1371/journal.pone.0329806
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0329806. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.