Author
Listed:
- Wu Yi
- Hong Luo
- Xiaohu Huang
- Xiaohan Zhu
- Zhengyu Wang
- Yong Li
Abstract
In the context of intensifying global environmental pressures, heavy rainfall in extreme climate regions significantly increases landslide risks, threatening societal stability and sustainable development. While research on rainfall-induced landslides is well-established, the deformation and instability mechanisms of landslides under complex rainfall patterns warrant further investigation. This study focuses on the Wangjiapo landslide in the Three Gorges Reservoir area. Through comprehensive field investigations, deformation monitoring, and rainfall data analysis, we systematically characterized the landslide’s deformation characteristics. Employing the similarity theory, a flume model experiment was designed to simulate four distinct rainfall patterns. Real-time monitoring of parameters, including slope displacement, pore water pressure, soil pressure, and moisture content, was conducted using multiple sensors, such as pull wire displacement sensors, pore water pressure sensors, and soil pressure sensors. The macroscopic deformation and internal stress variations of the landslide under varying rainfall conditions were thoroughly analyzed. Statistical processing of experimental data facilitated a comparative analysis with in-situ monitoring data, with further validation performed using Geo-Studio numerical simulation methods. Through these integrated approaches, this study elucidates the influence of different rain patterns on the deformation and failure mechanisms of accumulated landslides. Our findings highlight the critical role of rainfall intensity and rainfall time series in driving landslide deformation, identifying pore water pressure and shear strength variations as crucial factors inducing landslide instability. Furthermore, we delineate four distinct stages of the landslide failure process and characterize the temporal and spatial evolution of the instability mechanism, addressing a critical gap in understanding the deformation mechanisms of landslides under complex rainfall patterns. These results provide valuable insights for landslide monitoring and early warning systems and inform strategies for landslide disaster monitoring and prevention.
Suggested Citation
Wu Yi & Hong Luo & Xiaohu Huang & Xiaohan Zhu & Zhengyu Wang & Yong Li, 2025.
"Research on the deformation mechanisms of accumulated landslides induced by different rain patterns based on flume model tests,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-30, August.
Handle:
RePEc:plo:pone00:0329728
DOI: 10.1371/journal.pone.0329728
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0329728. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.